В современных радиоэлектронных устройствах используется весьма широкий ассортимент самых разнообразных электронных приборов. Порой отсутствие одного или нескольких таких элементов может затормозить или даже прервать выполнение работы по монтажу или макетированию схемы. Очень часто встречаются ситуации, когда необходимо один элемент заменить другим. Если речь идет о простой замене одного номинала резистора или конденсатора на другой, то решение задачи замены или подбора заменяющего номинала очевидно. Менее очевидны замены радиоэлементов, имеющих специфические, только им присущие свойства.
Ниже будут рассмотрены вопросы замены некоторых специальных полупроводниковых приборов их эквивалентами, выполненными из более доступных элементов.
В импульсной технике широко используют управляемые и неуправляемые коммутирующие элементы, имеющие вольт-амперную характеристику с N- или S-образным участком. Это лавинные транзисторы, газовые разрядники, динисторы, тиристоры, симисторы, однопереходные транзисторы, лямбда-диоды, туннельные диоды, инжекционно-полевые транзисторы и другие элементы.
В релаксационных генераторах импульсов, различных преобразователях электрических и неэлектрических величин в частоту широко используют биполярные лавинные транзисторы. Следует отметить, что специально такие транзисторы почти не выпускают. На практике в этих целях используют обычные транзисторы в необычном включении или режиме эксплуатации.
Лавинный транзистор — полупроводниковый прибор, работающий в режиме лавинного пробоя. Такой пробой обычно возникает при напряжении, превышающем предельно допустимое значение. Не допустить теплового пробоя (необратимого повреждения) транзистора можно при ограничении тока через транзистор (подключением высокоомной нагрузкой). Лавинный пробой транзистора может наступать в «прямом» и «инверсном» включении транзистора. Напряжение лавинного пробоя при инверсном включении (полярность подключения полупроводникового прибора противоположна общепринятой, рекомендованной) обычно ниже, чем для «прямого» включения. Вывод базы транзистора часто не используется (не подключается к другим элементам схемы). В ряде случаев базовый вывод соединяют с эмиттером через высокоомный резистор (сотни кОм — ед. МОм). Это позволяет в некоторых пределах регулировать величину напряжения лавинного пробоя.
На рис.2.1 приведена схема равноценной замены «лавинного» транзистора интегрального прерывателя К101КТ1 ее дискретными аналогами. Интересно отметить, что при ближайшем рассмотрении эта схема тождественна эквивалентной схеме динистора (рис. 2.1), тиристора (рис.2.2) и однопереходного транзистора (рис.2.4). Отметим попутно, что и вид вольт-амперных характеристик всех этих полупроводниковых приборов имеет общие характерные особенности. На их вольт-амперных характеристиках имеется S-образный участок, участок с так называемым «отрицательным» динамическим сопротивлением. Благодаря такой особенности вольт-амперной характеристики перечисленные приборы могут использоваться для генерации электрических колебаний.
Рис. 2.1. Аналог лавинного транзистора и динистора
Тиристоры, динисторы и им подобные элементы способны при весьма незначительных внутренних потерях управлять большими мощностями, подводимыми к нагрузке.
Тиристоры — приборы, обладающие двумя устойчивыми состояниями: состоянием низкой проводимости (проводимость отсутствует, прибор заперт) и состоянием высокой проводимости (проводимость близка к нулю, прибор открыт). Представители класса тиристоров [Вишневский А.И]:
- диодные тиристоры (динисторы, диаки), имеющие два вывода (анод и катод), управляемые путем подачи на электроды напряжения с высокой скоростью его нарастания или повышения приложенного напряжения до величины, близкой к критической;
- триодные тиристоры (тринисторы, триаки), трехэлектродные элементы, управляющий электрод которых служит для перевода тиристора из закрытого состояния в открытое;
- тетродные тиристоры, имеющие два управляющих электрода;
- симметричные тиристоры — симисторы, имеющие пятислойную структуру. Иногда этот полупроводниковый прибор называют семистором.
Диодные тиристоры (динисторы), ассортимент которых не столь велик, различаются, главным образом, максимально допустимым постоянным прямым напряжением в закрытом состоянии. Так, для динисторов типов КН102А, Б, В, Г, Д, Е, Ж, И (2Н102А — И) значения этих напряжений составляют, соответственно, 5, 7, 10, 14, 20, 30, 40, 50V при обратном токе не более 0,5 мА. Максимально допустимый постоянный ток в открытом состоянии для этих полупроводниковых приборов равен 0,2 А при остаточном напряжении в открытом состоянии 1,5V.
На рис.2.1 приведена эквивалентная схема низковольтного динистора. Если принять R1=R3=100 Ом, можно получить динистор с управляемым (с помощью резистора R2) напряжением переключения от 1 до 25 В [Войцеховский Я., Р 11/73-40, Р 12/76-29]. При отсутствии этого резистора и при условии R1=R3=5,1 кОм напряжение переключения составит 9V, а при R1=R3=3 кОм — 12V.
Аналог тиристора р-n-р-n-структуры, описанный в книге Я. Войцеховского, показан на рис.2.2. Буквой А обозначен анод; К — катод; УЭ — управляющий электрод. В схемах (рис. 2.1, 2.2) могут быть использованы транзисторы типов КТ315 и КТ361. Необходимо лишь, чтобы подводимое к полупроводниковому прибору или его аналогу напряжение не превышало предельных паспортных значений. В таблице (рис.2.2) показано, какими величинами R1 и R2 следует руководствоваться при создании аналога тиристора на основе германиевых или кремниевых транзисторов.
Рис.2.2. Аналог тиристора
В разрывы электрической цепи, показанные на схеме (рис.2.2) крестиками, можно включить диоды, позволяющие влиять на вид вольт-амперной характеристики аналога. В отличие от обычного тиристора, его аналогом (рис.2.2) можно управлять, используя дополнительный вывод — управляющий электрод УЭдоп , подключенный к базе транзистора VT2 (верхний рисунок) или VT1 (нижний рисунок). Обычно тиристор включают кратковременной подачей напряжения на управляющий электрод УЭ. При подаче напряжения на электрод УЭдоп тиристор, напротив, можно перевести из включенного состояния в выключенное.
Аналог управляемого динистора может быть создан с использованием тиристора (рис.2.3) [Р 3/86-41]. При указанных на схеме типах элементов и изменении сопротивления резистора R1 от 1 до 6 кОм напряжение переключения динистора в проводящее состояние изменяется от 15 до 27V.
![]() |
![]() |
Рис. 2.3. Аналог управляемого динистора | Рис. 2.4. Аналог однопереходного транзистора |
Эквивалентная схема используемого в генераторных устройствах полупроводникового прибора — однопереходного транзистора — показана на рис.2.4. Б1 и Б2 — первая и вторая базы транзистора.
Инжекционно-полевой транзистор (И/77) представляет собой полупроводниковый прибор с S-образной ВАХ. Подобные приборы широко используют в импульсной технике — в релаксационных генераторах импульсов, преобразователях напряжение-частота, ждущих и управляемых генераторах и т.д. Такой транзистор может быть составлен объединением полевого и обычного биполярного транзисторов (рис.2.5, 2.6).
На основе дискретных элементов может быть смоделирована не только полупроводниковая структура. На рис. 2.7 показана схема устройства, эквивалентного низковольтному газовому разряднику [ПТЭ 4/83-127]. Этот прибор представляет собой газонаполненный баллон с двумя электродами, в котором возникает электрический межэлектродный пробой при превышении некоторого критического значения напряжения. Напряжение «пробоя» для аналога газового разрядника (рис.2.7) составляет 20V. Таким же образом, может быть создан аналог, например, неоновой лампы.
![]() |
![]() |
![]() |
Рис. 2.5. Аналог инжекционно-полевого транзистора N-структуры | Рис. 2.6. Аналог инжекционно-полевого транзистора P-структуры | Рис. 2.7. Аналог газового разрядника |
Совершенно особым видом ВАХ обладают полупроводниковые приборы типа лямбда-диодов, туннельных диодов. На вольт-амперных характеристиках этих приборов имеется N-образный участок. Лямбда-диоды и туннельные диоды могут быть использованы для генерации и усиления электрических сигналов. На рис.2.8 и рис.2.9 показаны схемы, имитирующие лямбда-диод [РТЕ 9/87-35]. Практически в генераторах чаще используют схему, представленную на рис.2.9 [ПТЭ 5/77-96]. Если между стоками полевых транзисторов включить управляемый резистор (потенциометр) либо транзистор (полевой или биполярный), то видом вольт-амперной характеристики такого «лямбда-диода» можно управлять в широких пределах: регулировать частоту генерации, модулировать колебания высокой частоты и т.д.
![]() |
![]() |
![]() |
Рис. 2.8. Аналог лямбда-диода | Рис. 2.9. Аналог лямбда-диода | Рис. 2.10. Аналог туннельного диода |
Туннельные диоды также используют для генерации и усиления высокочастотных сигналов. Отдельные представители этого класса полупроводниковых приборов способны работать до мало достижимых в обычных условиях частот — порядка единиц ГГц. Устройство, позволяющее имитировать вольт-амперную характеристику туннельного диода, показано на рис.2.10 [Р 4/77-30].
Варикапы — это полупроводниковые приборы с изменяемой емкостью. Принцип их работы основан на изменении барьерной емкости полупроводникового перехода при изменении приложенного напряжения. Чаще на варикап подают обратное смещение, реже — прямое. Такие элементы обычно применяют в узлах настройки радио- и телеприемников. В качестве варикапов могут быть использованы обычные диоды и стабилитроны (рис.2.11), а также их полупроводниковые аналоги (рис.2.12 [F 9/73-434], рис. 2.13 [ПТЭ 2/81-151]).
![]() |
![]() |
![]() |
Рис. 2.11. Варикап | Рис. 2.12. Аналог варикапа | Рис. 2.13. Аналог варикапа |
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год