Интегральный стабилизатор TL431 применяется, в основном, в блоках питания. Однако, для него можно найти еще немало применений. Некоторые из таких схем приведены в этой статье.
В этой статье будет рассказано о простых и полезных устройствах, выполненных с применением микросхемы TL431. Но в данном случае не надо пугаться слова «микросхема», у нее всего три вывода, и внешне она похожа на простой маломощный транзистор в корпусе TO-90.
Сначала немного истории
Уж так повелось, что всем электронщикам известны магические числа 431, 494. Что это такое?
Компания TEXAS INSTRUMENTS стояла у самых истоков полупроводниковой эры. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP-10. Первая интегральная микросхема была создана еще в 1958 году сотрудником этой компании Джеком Килби.
Сейчас компания TI выпускает широкий ассортимент микросхем, название которых начинается с префиксов TL и SN. Это соответственно аналоговые и логические (цифровые) микросхемы, которые навсегда вошли в историю компании TI и до сих пор находят широчайшее применение.
В числе самых первых в списке «магических» микросхем следует, наверно, считать регулируемый стабилизатор напряжения TL431. В трехвыводном корпусе этой микросхемы спрятано 10 транзисторов, а функция, выполняемая ею, одинакова с обычным стабилитроном (диод Зенера).
Но за счет подобного усложнения микросхема обладает более высокой термостабильностью и повышенной крутизной характеристики. Главная же ее особенность в том, что при помощи внешнего делителя напряжение стабилизации можно изменять в пределах 2,5...30V. У последних моделей нижний порог составляет 1,25V.
TL431 была создана сотрудником компании TI Барни Холландом в начале семидесятых годов. Тогда он занимался копированием микросхемы стабилизатора другой компании. У нас бы сказали сдирания, а не копирования. Так вот Барни Холланд позаимствовал из оригинальной микросхемы источник опорного напряжения, а уже на его основе создал отдельную микросхему-стабилизатор. Сначала она называлась TL430, а после некоторых усовершенствований получила название TL431.
С тех пор прошло немало времени, а нет сейчас ни одного компьютерного блока питания, где бы она не нашла применения. Она также находит применение практически во всех маломощных импульсных источниках питания. Один из таких источников теперь есть в каждом доме, - это зарядное устройство для сотовых телефонов. Такому долгожительству можно только позавидовать. На рис.1 показана функциональная схема TL431.
Также Барни Холландом была создана не менее известная и до сих пор востребованная микросхема TL494. Это двухтактный ШИМ-контроллер, на базе которого было создано множество моделей импульсных источников питания. Поэтому число 494 также по праву относится к «магическим».
А теперь перейдем к рассмотрению различных конструкций на базе микросхемы TL431.
Микросхема TL431 может применяться не только по своему прямому назначению как стабилитрон в блоках питания. На ее основе возможно создание различных световых индикаторов и даже звуковых сигнализаторов. С помощью подобных устройств можно отслеживать много различных параметров.
В первую очередь это просто электрическое напряжение. Если же какую-либо физическую величину с помощью датчиков представить в виде напряжения, то можно сделать устройство, контролирующее, например, уровень воды в емкости, температуру и влажность, освещенность или давление жидкости или газа.
Сигнализатор превышения напряжения
рис.2 |
Если же напряжение на управляющем электроде превысит 2,5V, стабилитрон откроется и засветится светодиод HL1. Необходимое ограничение тока через стабилитрон DA1 и светодиод HL1 обеспечивает резистор R3. Максимальный ток стабилитрона составляет 100 мА, в то время как тот же параметр у светодиода HL1 всего 20 мА. Именно из этого условия и рассчитывается сопротивление резистора R3. более точно это сопротивление можно рассчитать по нижеприведенной формуле.
R3 = (Uпит – Uhl - Uda) / Ihl
Здесь использованы следующие обозначения: Uпит – напряжение питания, Uhl – прямое падение напряжения на светодиоде, Uda - напряжение на открытой микросхеме (обычно 2V), Ihl - ток светодиода (задается в пределах 5...15 мА). Также не следует забывать о том, что максимальное напряжение для стабилитрона TL431 всего 36V. Этот параметр также превышать нельзя.
Уровень срабатывания сигнализатора
Напряжение на управляющем электроде, при котором загорается светодиод HL1 (Uз), задается делителем R1R2. Параметры делителя рассчитываются по формуле:
R2 = 2,5 R1 / (Uз – 2,5)
Для более точной настройки порога срабатывания можно вместо резистора R2 установить подстроечный, номиналом раза в полтора больше, чем получилось по расчету. После того, как настройка произведена, его можно заменить постоянным резистором, сопротивление которого равно сопротивлению введенной части подстроечного.
Иногда требуется контролировать несколько уровней напряжения. В этом случае потребуются три таких сигнализатора, каждый из которых настроен на свое напряжение. Таким образом возможно создание целой линейки индикаторов, линейной шкалы.
Для питания цепи индикации, состоящей из светодиода HL1 и резистора R3, можно применить отдельный источник питания, даже нестабилизированный. В этом случае контролируемое напряжение подается на верхний по схеме вывод резистора R1, который следует отключить от резистора R3. При таком включении контролируемое напряжение может находиться в пределах от трех до нескольких десятков вольт.
Индикатор пониженного напряжения
рис.3 |
Индикатор изменения (напряжения,...)
рис.4 |
рис.5 |
Если требуется контролировать только изменение напряжения, индикатор можно собрать по схеме, представленной на рис.4.
Если требуется следить за изменением какой-либо физической величины, то резистор R2 можно заменить датчиком, изменяющим сопротивление под действием окружающей среды. Подобное устройство показано на рис.5.
Звуковой индикатор уровня жидкости
рис.6 |
Основная область применения микросхемы TL431, конечно же блоки питания. Но, как видим, только этим возможности микросхемы не ограничиваются.