В наших тестах, впрочем, проверка работы блока на полной мощности проходит в смягчённых условиях – при комнатной температуре, около 22...25°C. С максимальной допустимой нагрузкой блок работает не менее получаса, если за это время с ним не произошло никаких происшествий – проверка считается успешно пройденной.
Как минусы, так и плюсы такой конструкции очевидны: с одной стороны, снижение себестоимости, с другой – зависимость напряжений друг от друга. Скажем, если мы увеличиваем нагрузку на шину +12 V, соответствующее напряжение проседает и стабилизатор блока пытается его "вытянуть" на прежний уровень – но, так как он одновременно стабилизирует и +5 V, повышаются оба напряжения. Стабилизатор считает ситуацию исправленной, когда среднее отклонение обоих напряжений от номинала равно нулю – но в данной ситуации это означает, что напряжение +12 V окажется немного ниже номинала, а +5 V – немного выше; если мы ещё поднимем первое, то сразу же увеличится и второе, если опустим второе – снизится и первое.
Пример графика КНХ |
Область типичных нагрузок на графике КНХ |
По горизонтальной оси графика откладывается нагрузка на шину +12 V тестируемого блока (если у него несколько линий с этим напряжением – суммарная нагрузка на них), а по вертикальной – суммарная нагрузка на шины +5 V и +3,3 V. Соответственно, каждая точка графика соответствует некоторому балансу нагрузки блока между этими шинами. Для большей наглядности мы не просто изображаем на графиках КНХ зону, в которой выходные нагрузки блока не выходят за допустимые пределы, а ещё и обозначаем разными цветами их отклонения от номинала – от зелёного (отклонение менее 1%) до красного (отклонение от 4 до 5%). Отклонение свыше 5% считается недопустимым.
Скажем, на приведённом выше графике мы видим, что напряжение +12 V (он построен именно для него) у тестируемого блока держится неплохо, значительная часть графика залита зелёным цветом – и лишь при сильном дисбалансе нагрузок в сторону шин +5 V и +3,3 V оно уходит в красный цвет.
Конечно, большое значение имеет и то, в какой именно области графика напряжение сильнее отклоняется от номинала. На картинке выше штриховкой закрашена область энергопотребления, типичная для современных компьютеров – все наиболее мощные их компоненты (видеокарты, процессоры...) ныне питаются от шины +12 V, поэтому нагрузка на неё может быть очень большой. А вот на шинах +5 V и +3,3 V, по сути, остались только жёсткие диски да компоненты материнской платы, так что потребление по ним очень редко превышает несколько десятков ватт даже в очень мощных по современным меркам компьютерах.
Если сравнить приведённые выше графики двух блоков, то хорошо видно, что первый из них уходит в красный цвет в области, несущественной для современных компьютеров, а вот второй, увы – наоборот. Поэтому, хотя в целом по всему диапазону нагрузок оба блока показали схожий результат, на практике первый будет предпочтительнее.
Так как мы в ходе теста контролируем все три основные шины блока питания – +12 V, +5 V и +3,3 V – то КНХ в статьях представляются в виде анимированного трёхкадрового изображения, каждый из кадров которого соответствует отклонению напряжения на одной из упомянутых шин.
В последнее время также всё большее распространение получают блоки питания с независимой стабилизацией выходных напряжений, в которых классическая схема дополнена дополнительными стабилизаторами по так называемой схеме с насыщаемым сердечником. Такие блоки демонстрируют существенно меньшую корреляцию между выходными напряжениями – как правило, графики КНХ для них изобилуют зелёным цветом.
Эффективность системы охлаждения блока можно рассматривать с двух позиций – с точки зрения шумности и с точки зрения нагрева. Очевидно, что достичь хороших показателей по обоим этим пунктам весьма проблематично: хорошее охлаждение можно получить, установив более мощный вентилятор, но тогда мы проиграем в шумности – и наоборот.
Разумеется, все современные блоки обладают регулировкой скорости вращения вентилятора – однако на практике может сильно варьироваться как начальная скорость (то есть скорость при минимальной нагрузке; она весьма важна, так как определяет шумность блока в моменты, когда компьютер ничем не загружен – и значит, вентиляторы видеокарты и процессора вращаются на минимальных оборотах), так и график зависимости скорости от нагрузки. Скажем, в блоках питания нижней ценовой категории для регулировки скорости вентилятора часто используется один-единственный терморезистор без каких-либо дополнительных схем – при этом обороты могут меняться всего на 10...15%, что и регулировкой-то назвать даже трудно.
Переменное напряжение сети (с частотой 50 или 60 Гц, в зависимости от страны) на входе блока выпрямляется и сглаживается, после чего поступает на транзисторный ключ, преобразующий постоянное напряжение обратно в переменное, но уже с частотой на три порядка выше – от 60 до 120 кГц, в зависимости от модели блока питания. Это напряжение и поступает на высокочастотный трансформатор, понижающий его до нужных нам значений (12 V, 5 V...), после чего снова выпрямляется и сглаживается. В идеале выходное напряжение блока должно быть строго постоянным – но в реальности, конечно, полностью сгладить переменный высокочастотный ток невозможно. Стандарт ATX12V Power Supply Design Guide требует, чтобы размах (расстояние от минимума до максимума) остаточных пульсаций выходных напряжений блоков питания при максимальной нагрузке не превышал 50 мВ для шин +5 V и +3,3 V и 120 мВ для шины +12 V.
В ходе тестирования блока мы снимаем осциллограммы его основных выходных напряжений при максимальной нагрузке с помощью двухканального осциллографа Velleman PCSU1000 и представляем их в виде общего графика:
Текущая версия стандарта ATX12V 2.2 накладывает ограничение на КПД блока снизу: минимум 72% при номинальной нагрузке, 70% при максимальной и 65% при лёгкой нагрузке. Помимо этого, есть рекомендуемые стандартом цифры (КПД 80% при номинальной нагрузке), а также добровольная программа сертификации "80+Plus", согласно которой блок питания должен иметь КПД не ниже 80% при любой нагрузке от 20% до максимально допустимой. Такие же требования, как и в "80+Plus", содержатся в новой программе сертификации Energy Star версии 4.0.
На практике КПД блока питания зависит от напряжения сети: чем оно выше, тем лучше КПД; разница в КПД между сетями 110 V и 220 V составляет около 2 %. Кроме того, разница в КПД между разными экземплярами блоков одной модели из-за разброса параметров компонентов также может составлять 1...2%.
В ходе наших тестов мы небольшими шагами изменяем нагрузку на блок от 50 W до максимально возможной и на каждом шаге после небольшого прогрева измеряем мощность, потребляемую блоком от сети – отношение мощности нагрузки к мощности, потребляемой от сети, и даёт нам КПД. В результате получается график зависимости КПД от нагрузки на блок.
Как правило, у импульсных блоков питания КПД быстро растёт по мере увеличения нагрузки, достигает максимума и затем медленно снижается. Такая нелинейность даёт интересное следствие: с точки зрения КПД, как правило, немного выгоднее покупать блок, паспортная мощность которого адекватна мощности нагрузки. Если же взять блок с большим запасом мощности, то маленькая нагрузка попадёт на нём в область графика, где КПД ещё не максимален (например, 200-ваттная нагрузка на показанном выше графике 730-ваттного блока).
Собственно же проблема заключается в том, что, если активная мощность целиком преобразуется в блоке в работу (под которой мы в данном случае понимаем как отдаваемую блоком в нагрузку энергию, так и его собственный нагрев), то реактивная им на самом деле не потребляется вообще – она полностью возвращается обратно в сеть. Так сказать, просто гуляет туда-сюда между электростанцией и блоком. А вот соединяющие их провода она при этом нагревает ничуть не хуже, чем мощность активная... Поэтому от реактивной мощности стараются по мере возможности избавиться.
Схема, известная под названием "активный PFC", является наиболее эффективным средством подавления реактивной мощности. По своей сути, это импульсный преобразователь, который сконструирован так, что мгновенный потребляемый ток у него прямо пропорционален мгновенному напряжению в сети – иначе говоря, он специально сделан линейным, а потому потребляет только активную мощность. С выхода A-PFC напряжение подаётся уже собственно на импульсный преобразователь блока питания, тот самый, который раньше создавал реактивную нагрузку своей нелинейностью – но, так как теперь это уже постоянное напряжение, то линейность второго преобразователя роли больше не играет; он надёжно отделён от питающей сети и повлиять на неё больше не может.
Для оценки относительной величины реактивной мощности применяют такое понятие, как коэффициент мощности – это отношение активной мощности к сумме активной и реактивной мощностей (эту сумму также часто называют полной мощностью). В обычном блоке питания он составляет около 0,65, а в блоке питания с A-PFC – около 0,97...0,99, то есть использование A-PFC сводит реактивную мощность почти к нулю.
Пользователи и даже авторы обзоров часто путают коэффициент мощности к коэффициентом полезного действия – несмотря на то, что оба описывают эффективность блока питания, это очень грубая ошибка. Разница в том, что коэффициент мощности описывает эффективность использования блоком питания сети переменного тока – какой процент проходящей через неё мощности блок использует для своей работы, а КПД – уже эффективность преобразования потреблённой от сети мощности в отдаваемую в нагрузку мощность. Друг с другом они не связаны вообще никак, потому что, как было написано выше, реактивная мощность, определяющая величину коэффициента мощности, в блоке попросту ни во что не преобразуется, с ней нельзя связать понятие "эффективность преобразования", следовательно, она никак не влияет на КПД.
Вообще говоря, A-PFC выгоден не пользователю, а энергетическим компаниям, так как он снижает нагрузку на энергосистему, создаваемую блоком питания компьютера, более чем на треть – а когда компьютер стоит на каждом рабочем столе, это выливается в весьма заметные цифры. В то же время для обычного домашнего пользователя нет практически никакой разницы, есть в составе его блока питания A-PFC или же нет, даже с точки зрения оплаты электроэнергии – по крайней мере пока бытовые электросчётчики учитывают только активную мощность. Все же заявления производителей о том, как A-PFC помогает вашему компьютеру – не более чем обычный маркетинговый шум.
Одним из побочных плюсов A-PFC является то, что его можно легко спроектировать для работы в полном диапазоне напряжений от 90 до 260 V, сделав таким образом универсальный блок питания, работающий в любой сети без ручного переключения напряжения. Более того, если блоки с переключателями напряжения сети могут работать в двух диапазонах – 90...130 V и 180...260 V, но при этом их нельзя запустить в диапазоне от 130 до 180 V, то блок с A-PFC покрывает все эти напряжения целиком. В результате, если вы по каким-либо причинам вынуждены работать в условиях нестабильного электропитания, часто проседающего ниже 180 V, то блок с A-PFC позволит либо вообще обойтись без ИБП, либо изрядно увеличить срок службы его аккумулятора.
Впрочем, сам по себе A-PFC ещё не гарантирует работу в полном диапазоне напряжений – он может быть рассчитан только на диапазон 180...260 V. Это иногда встречается в блоках, предназначенных для Европы, так как отказ от полнодиапазонного A-PFC позволяет немного уменьшить его себестоимость.
Помимо активных PFC, в блоках также встречаются и пассивные. Они представляют собой наиболее простой способ коррекции коэффициента мощности – это всего лишь большой дроссель, включённый последовательно с блоком питания. За счёт своей индуктивности он немного сглаживает импульсы тока, потребляемые блоком, тем самым снижая степень нелинейности. Эффект от P-PFC весьма невелик – коэффициент мощности увеличивается с 0,65 до 0,7...0,75, зато, если установка A-PFC требует серьёзной переделки высоковольтных цепей блока, то P-PFC может быть без малейшего труда добавлен в любой существующий блок питания.
Для оценки адекватности реализации A-PFC в каждом конкретном блоке мы подключаем его к ИБП APC SmartUPS SC 620VA и проверяем их работу в двух режимах – сначала при питании от сети, а потом при переходе на батареи. В обоих случаях мощность нагрузки на блок постепенно увеличивается до того момента, пока на ИБП не включится индикатор перегрузки.
Если данный блок питания совместим с ИБП, то допустимая мощность нагрузки на блок при питании от сети обычно составляет 340...380 W, а при переходе на батареи – чуть меньше, около 320...340 W. При этом, если в момент перехода на батареи мощность была выше, то ИБП включает индикатор перегрузки, но не отключается.
Если же у блока есть указанная выше проблема, то максимальная мощность, при которой ИБП соглашается с ним работать на батареях, падает заметно ниже 300 W, а при её превышении ИБП полностью выключается либо прямо в момент перехода на батареи, либо спустя пять-десять секунд. Если вы планируете обзаводиться ИБП, такой блок лучше не покупать.
К счастью, в последнее время блоков, несовместимых с ИБП, остаётся всё меньше. Скажем, если такие проблемы были у блоков серий PLN/PFN компании FSP Group, то уже в следующих сериях GLN/HLN они были полностью исправлены.
Dual +12V output circuits
В стандарте ATX12V 1.3 рекомендуемый ток шины +12 V достиг 18 А... и вот тут и начались проблемы. Нет, не с повышением тока, с этим никаких особенных проблем не было, а с безопасностью. Дело в том, что, согласно стандарту EN-60950, максимальная мощность на свободно доступных пользователю разъёмах не должна превышать 240 ВА – считается, что большие мощности в случае замыканий или отказа оборудования уже с большой вероятностью могут приводить к разным неприятным последствиям, например, к возгоранию. На 12-вольтовой шине такая мощность достигается при токе 20 А, при этом выходные разъёмы блока питания, очевидно, считаются свободно доступными пользователю.
В результате, когда потребовалось ещё больше увеличить допустимый ток нагрузки на +12 V, разработчиками стандарта ATX12V (то есть компанией Intel) было решено разделить эту шину на несколько, с током по 18 А каждая (разница в 2 А закладывалась как небольшой запас). Исключительно из требований безопасности, абсолютно никаких других причин у этого решения нет. Немедленным следствием из этого является то, что блоку питания на самом деле совсем не требуется иметь более одной шины +12 V – ему лишь требуется, чтобы при попытке нагрузить любой его 12-вольтовый разъём током более 18 А срабатывала защита. И всё. Самый простой способ реализации этого заключается в установке внутри блока питания нескольких шунтов, к каждому из которых подключена своя группа разъёмов. Если ток через один из шунтов превышает 18 А – срабатывает защита. В результате, с одной стороны, ни на одном из разъёмов по отдельности мощность не может превысить 18 А × 12 V = 216 ВА, с другой же стороны, суммарная мощность, снимаемая с разных разъёмов, может быть и больше этой цифры. И волки сыты, и овцы целы.
Поэтому – на самом деле – блоков питания с двумя, тремя или четырьмя шинами +12 V в природе практически не встречается. Просто потому, что это не надо – зачем городить внутри блока, где и так весьма тесно, кучу дополнительных деталей, когда можно обойтись парой-тройкой шунтов да простенькой микросхемой, которая будет контролировать напряжение на них (а так как сопротивление шунтов нам известно, то из напряжения немедленно и однозначно следует величина протекающего через шунт тока)?
Но ладно, если бы этим дело ограничилось. Последнее веяние моды – это блоки питания, в которых разделение линий как бы есть, а как бы и нет. Как это? Очень просто: как только ток на одной из линий достигает заветных 18 А, защита от перегрузки... отключается. В результате, с одной стороны, и сакральная надпись "Triple 12V Rails for unprecedented power and stability" с коробки никуда не исчезает, а с другой, можно ещё рядом таким же шрифтом добавить какую-нибудь чушь о том, что при необходимости все три линии в одну объединяются. Чушь – потому что, как сказано выше, они никогда и не разъединялись. Постичь же всю глубину "новой технологии" с технической точки зрения вообще решительно невозможно: по сути, отсутствие одной технологии нам пытаются преподнести как наличие другой.
Из известных нам случаев пока что на ниве продвижения в массы "самоотключающейся защиты" отметились компании Topower и Seasonic, а также, соответственно, брэнды, продающие их блоки под своей маркой.
Short circuit protection (SCP)
Защита от короткого замыкания выхода блока. Является обязательной согласно документу ATX12V Power Supply Design Guide – а значит, присутствует во всех блоках, претендующих на соответствие стандарту. Даже в тех, где на коробке нет надписи "SCP".
Overpower (overload) protection (OPP)
Защита от перегрузки блока по суммарной мощности по всем выходам. Является обязательной.
Overcurrent protection (OCP)
Защита от перегрузки (но ещё не короткого замыкания) любого из выходов блока по отдельности. Присутствует на многих, но не на всех блоках – и не для всех выходов. Обязательной не является.
Overtemperature protection (OTP)
Защита от перегрева блока. Встречается не столь часто и обязательной не является.
Overvoltage protection (OVP)
Защита от превышения выходных напряжений. Является обязательной, но, по сути, рассчитана на случай серьёзной неисправности блока – защита срабатывает лишь при 20...25% превышении любого из выходных напряжений над номиналом. Иначе говоря, если Ваш блок выдаёт 13 V вместо 12 V – его желательно как можно быстрее заменить, но вот его защита при этом срабатывать не обязана, потому как рассчитана на более критические ситуации, грозящие немедленным выходом подключённого к блоку оборудования из строя.
Undervoltage protection (UVP)
Защита от занижения выходных напряжений. Разумеется, слишком низкое напряжение, в отличие от слишком высокого, к фатальным последствиям для компьютера не приводит, но может вызвать сбои, скажем, в работе жёсткого диска. Опять же, защита срабатывает при проседании напряжений на 20...25%.
Nylon sleeve
Мягкие плетёные нейлоновые трубочки, в которые убраны выходные провода блока питания – они немного облегчают укладку проводов внутри системного блока, не давая им перепутываться.
Dual core CPU support
По сути, не более чем красивая этикетка. Двуядерные процессоры не требуют от блока питания никакой специальной поддержки.SLI and CrossFire support
Ещё одна красивая этикетка, означающая наличие достаточного количества разъёмов питания видеокарт и способности выдавать мощность, считающуюся достаточной для питания SLI-системы. Ничего более.
Industrial class components
Advanced double forward switching design
Выбор конкретной топологии блока питания определяется многими причинами – ассортиментом и ценой транзисторов с необходимыми характеристиками (а они серьёзно отличаются в зависимости от топологии), трансформаторов, управляющих микросхем... Скажем, однотранзисторный прямоходовый вариант прост и дёшев, но требует использования высоковольтного транзистора и высоковольтных диодов на выходе блока, поэтому используется он только в недорогих маломощных блоках (стоимость высоковольтных диодов и транзисторов большой мощности слишком велика). Полумостовый двухтактный вариант немного сложнее, зато и напряжение на транзисторах в нём вдвое меньше... В общем, в основном это вопрос наличия и стоимости необходимых компонентов. Например, можно с уверенностью прогнозировать, что рано или поздно во вторичных цепях компьютерных блоков питания начнут использоваться синхронные выпрямители – ничего особенно нового в этой технологии нет, известна она давно, просто пока что слишком дорога и обеспечиваемые ею преимущества не покрывают затраты.
Double transformer design
Использование двух силовых трансформаторов, которое встречается в блоках питания большой мощности (как правило, от киловатта) – как и в предыдущем пункте, чисто инженерное решение, которое само по себе в общем-то не влияет на характеристики блока сколь-нибудь заметным образом – просто в некоторых случаях удобнее распределить немалую мощность современных блоков по двум трансформаторам. Например, если один трансформатор полной мощности не удаётся втиснуть в габариты блока по высоте. Тем не менее, некоторые производители подают двухтрансформаторную топологию как позволяющую добиться большей стабильности, надёжности и так далее, что не совсем верно.
RoHS (Reduction of Hazardous Substances)
Разумеется, первоочередной задачей при тестировании блока питания является проверка его работы на различных мощностях нагрузки, вплоть до максимальной. Долгое время в различных обзорах авторы использовали для этой цели обычные компьютеры, в которые устанавливался проверяемый блок. Такая схема имела два основных недостатка: во-первых, нет возможности сколь-нибудь гибко контролировать потребляемую от блока мощность, во-вторых, трудно адекватно нагрузить блоки, имеющие большой запас мощности. Вторая проблема особенно ярко стала проявляться в последние годы, когда производители блоков питания устроили настоящую гонку за максимальной мощностью, в результате чего возможности их изделий намного превзошли потребности типичного компьютера. Конечно, можно говорить о том, раз для компьютера не требуется мощность более 500 Вт, то и нет большого смысла тестировать блоки на большей нагрузки – с другой стороны, раз уж мы вообще взялись испытывать изделия с большей паспортной мощностью, то было бы странно хотя бы формально не проверить их работоспособность во всём допустимом диапазоне нагрузок.
Для тестирования блоков питания в нашей лаборатории используется регулируемая нагрузка с программным управлением. Работа системы построена на одном хорошо известном свойстве полевых транзисторов с изолированным затвором (MOSFET): они ограничивают протекающий через цепь сток-исток ток в зависимости от напряжения на затворе.
Выше показана простейшая схема стабилизатора тока на полевом транзисторе: подключив схему к блоку питания с выходным напряжением +V и вращая ручку переменного резистора R1, мы меняем напряжение на затворе транзистора VT1, тем самым меняя и текущий через него ток I – от нуля до максимального (определяемого характеристиками транзистора и/или тестируемого блока питания).
Когда транзистор открыт, ток I протекает через его цепь сток-исток и резистор R2. Напряжение на последнем равно, согласно закону Ома, U = R2 × I. С резистора это напряжение поступает на инвертирующий вход операционного усилителя DA1; на неинвертирующий вход этого же ОУ поступает управляющее напряжение U1 с переменного резистора R1. Свойства любого операционного усилителя таковы, что при таком включении он старается поддерживать напряжение на своих входах одинаковым; делает он это посредством изменения своего выходного напряжения, которое в нашей схеме поступает на затвор полевого транзистора и, соответственно, регулирует протекающий через него ток.
Допустим, сопротивление R2 = 1 Ом, а на резисторе R1 мы установили напряжение 1 V: тогда ОУ так изменит своё выходное напряжение, чтобы на резисторе R2 также падал 1 вольт – соответственно, ток I установится равным 1 V / 1 Ом = 1 А. Если мы установим R1 на напряжение 2 V – ОУ отреагирует установкой тока I = 2 А, и так далее. Если ток I и, соответственно, напряжение на резисторе R2 изменятся из-за разогрева транзистора, ОУ тут же скорректирует своё выходное напряжение так, чтобы вернуть их обратно.
Как видите, мы получили отличную управляемую нагрузку, которая позволяет плавно, поворотом одной ручки, менять ток в диапазоне от нуля до максимума, а единожды установленное его значение автоматически поддерживает сколь угодно долго, да при этом ещё и весьма компактна. Такая схема, разумеется, на порядок удобнее громоздкого набора низкоомных резисторов, группами подключаемых к тестируемому блоку питания.
Максимальная мощность, рассеиваемая на транзисторе, определяется его тепловым сопротивлением, предельно допустимой температурой кристалла и температурой радиатора, на котором он установлен. В нашей установке используются транзисторы International Rectifier IRFP264N (PDF, 168 кбайт) с допустимой температурой кристалла 175°C и тепловым сопротивлением кристалл-радиатор 0,63°C/Вт, а система охлаждения установки позволяет удерживать температуру радиатора под транзистором в пределах 80°C (да, требующиеся для этого вентиляторы – весьма шумны...). Таким образом, максимальная рассеиваемая на одном транзисторе мощность равна (175-80)/0,63 = 150 Вт. Для достижения нужной мощности используется параллельное включение нескольких описанных выше нагрузок, управляющий сигнал на которые подаётся с одного и того же ЦАПа; можно также использовать параллельное включение двух транзисторов при одном ОУ, в таком случае предельная рассеиваемая мощность увеличивается в полтора раза по сравнению с одним транзистором.
До полностью автоматизированного тестового стенда остаётся один шаг: заменить переменный резистор на ЦАП, управляемый компьютером – и мы сможем регулировать нагрузку программно. Подключив же несколько таких нагрузок к многоканальному ЦАП и установив тут же многоканальный АЦП, измеряющий выходные напряжения тестируемого блока в реальном времени, мы получим полноценную тестовую систему для проверки компьютерных блоков питания во всём диапазоне допустимых нагрузок при любых их комбинациях:
Выше на фотографии представлена наша тестовая система в её текущем виде. На верхних двух блоках радиаторов, охлаждаемых мощными вентиляторами типоразмера 120×120×38 мм, расположены транзисторы нагрузки 12-вольтовых каналов; более скромный радиатор охлаждает транзисторы нагрузки каналов +5 V и +3,3 V, а в сером блоке, подключаемом шлейфом к LPT-порту управляющего компьютера, расположены вышеупомянутые ЦАП, АЦП и сопутствующая электроника. При габаритах 290×270×200 мм она поволяет испытывать блоки питания мощностью до 1350 Вт (до 1100 Вт по шине +12 V и до 250 Вт по шинам +5 V и +3,3 V).
Измерение КПД и коэффициента мощности
Для измерения КПД блока и его коэффициента мощности используется дополнительное оборудование: тестируемый блок включается в сеть 220 V через шунт, к шунту же подключается осциллограф Velleman PCSU1000. Соответственно, на его экране мы видим осциллограмму потребляемого блоком тока, а значит, можем рассчитать потребляемую им от сети мощность, а зная установленную нами же мощность нагрузки на блок – и его КПД. Измерения проводятся в полностью автоматическом режиме: описанная выше программа PSUCheck умеет получать все нужные данные напрямую из ПО осциллографа, подключаемого к компьютеру по USB-интерфейсу.
Осциллограф Velleman PCSU1000
Этот же осциллограф используется и для измерения размаха пульсаций выходных напряжений блока питания. Измерения производятся на шинах +5 V, +12 V и +3,3 V при максимально допустимой нагрузке на блок, осциллограф подключается по дифференциальной схеме с двумя шунтирующими конденсаторами (именно такое подключение рекомендуется в ATX Power Supply Design Guide):
Измерение размаха пульсаций
Используемый осциллограф – двухканальный, соответственно, за один раз можно измерить размах пульсаций только на одной шине. Для получения полной картины мы повторяем измерения трижды, а три полученных осциллограммы – по одной для каждой из контролируемых трёх шин – сводим в одну картинку:
Настройки осциллографа указаны в левом нижнем углу картинки: в данном случае вертикальный масштаб равен 50 мВ/дел., а горизонтальный – 10 мкс/дел. Как правило, вертикальный масштаб во всех наших измерениях неизменен, а вот горизонтальный может меняться – некоторые блоки имеют на выходе низкочастотные пульсации, для них мы приводим ещё одну осциллограмму, с горизонтальным масштабом 2 мс/дел.
Скорость вентиляторов блока – в зависимости от нагрузки на него – измеряется в полуавтоматическом режиме: используемый нами оптический тахометр Velleman DTO2234 интерфейса с компьютером не имеет, поэтому его показания приходится заносить вручную. В ходе этого процесса мощность нагрузки на блок шагами меняется от 50 W до максимально допустимой, на каждом шаге блок выдерживается не менее 20 минут, после чего измеряется скорость вращения его вентилятора.
Одновременно мы измеряем прирост температуры воздуха, проходящего через блок. Измерения проводятся с помощью двухканального термопарного термометра Fluke 54 II, один из датчиков которого определяет температуру воздуха в комнате, а другой – температуру воздуха на выходе из блока питания. Для большей повторяемости результатов второй датчик мы закрепляем на специальной подставке с фиксированной высотой и расстоянием до блока – таким образом, во всех тестах датчик находится в одной и той же позиции относительно блока питания, что обеспечивает равные условия для всех участников тестирования.